

The Assessment of Output Digital Spectra in Quasi Enhancement-mode pHEMTs by A Modified Large-signal Model

Shih-Cheng Yang, Chih-Wei Wang, Cheng-Kuo Lin, Hsien-Chin Chiu, and Yi-Jen Chan
 Department of Electrical Engineering, National Central University, Chungli, Taiwan 32054, R.O.C
 Phone: 886-3-4273593 Fax: 886-3-4255830
 e-mail: yjchan@ee.ncu.edu.tw

Abstract — A modified quasi enhancement-mode pHEMTs RF large-signal model is presented which achieves a good agreement with the device performance. This model is based on the Curtice model, by modifying the formula to have a detailed description about non-linear microwave behaviors. The output digital spectra of quasi enhancement-mode pHEMTs can be well predicted by this model, including the ACPR and non-linear spectra regrowth characteristics.

I. INTRODUCTION

Power amplifiers (PAs) are the critical components, which determine the important system parameters such as talk time, standby time, overall cost, and size in today's communication systems. A handset requires the RF PA to offer a high power-added-efficiency (PAE) for achieving a longer operation. In addition, a single low voltage power supplied PA fabricated by pHEMTs is also necessary to eliminate the need for a negative power supply. For these reasons, an enhancement-mode pHEMT (E-pHEMT) offers an attractive solution for the handset PA applications [1]-[3]. However, due to the inherent device characteristics of E-pHEMTs, i.e. the low threshold voltage and its small gate turn-on voltage, result in a small operating dynamic range. It is easy for devices to be driven into the non-linear region away from the bias point. Therefore, it is necessary to propose a suitable device large-signal model to completely and accurately predict the device microwave non-linear behaviors.

Although there are many existing device models, such as Curtice model, Statz model or EE-HEMT model, have been developed for the large-signal simulation of GaAs FET circuit design [4]-[5]. All of them are either too complicated or can't well describe the device non-linear behaviors. Hence, in this paper we propose a modified large signal model for E-pHEMTs, which is based on the conventional Curtice model. In this study, we particularly focus on the model predictions of device non-linear characteristics under the digitally modulated scheme, which is important for the modern communication system.

II. THE DETAILS OF MODIFIED LARGE-SIGNAL MODEL

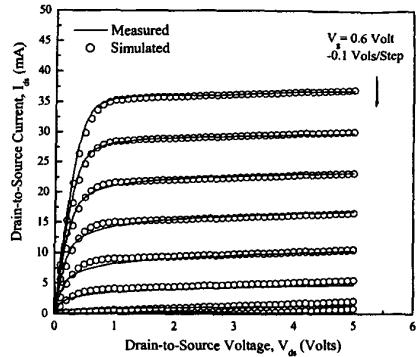
The modified large-signal model is based on the structure of Curtice model [4]. In order to take the device non-linear behaviors into consideration, instead of using its fixed junction capacitances (C_{gs} , C_{gd}), channel resistance (R_i), and output resistance (R_{ds}), we propose the following equations to describe these elements, which are the functions of V_{gs} and V_{ds} [6]. The measured data were extracted from the small-signal equivalent circuit model under the various biased measurements. These equations representing C_{gs} , C_{gd} , R_i and R_{ds} for quasi E-pHEMTs are expressed here:

$$C_{gs} = C_{gs0}(1 + \tanh(A_0 + A_1 V_{gs} + A_2 V_{gs}^2))(1 + \tanh(A_3 V_{ds})) \quad (1)$$

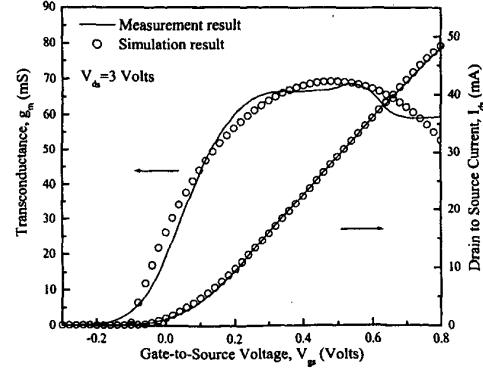
$$C_{gd} = C_{gd0}(1 + \tanh(B_0 + B_1 V_{gs} + B_2 V_{gs}^2))(1 - \tanh(1 + B_4 V_{ds} + B_5 V_{ds}^2)) \quad (2)$$

$$R_i = C_0 + C_1 V_{gs} + C_2 V_{gs}^2 + C_3 V_{gs}^3 + C_4 V_{gs}^4 \quad (3)$$

$$R_{ds} = D_0 + D_1 \exp(D_2 V_{gs}) \quad (4)$$


The fitting parameters in these equations are extracted from the multi-bias equivalent circuit model elements. As to the drain current equation, we used the same provided by the Curtice model shown in the following [4]:

$$I_{ds} = (A_0 + A_1 V_x + A_2 V_x^2 + A_3 V_x^3) \tanh(\gamma V_{ds}) \quad (5)$$


where

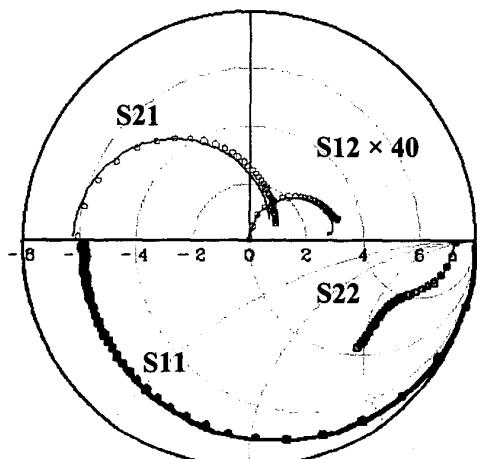
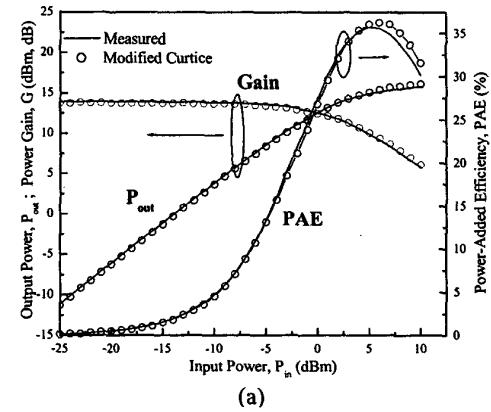
$$V_x = V_{gsi}(1 + \beta(V_{ds} - V_{dsi})) \quad (6)$$

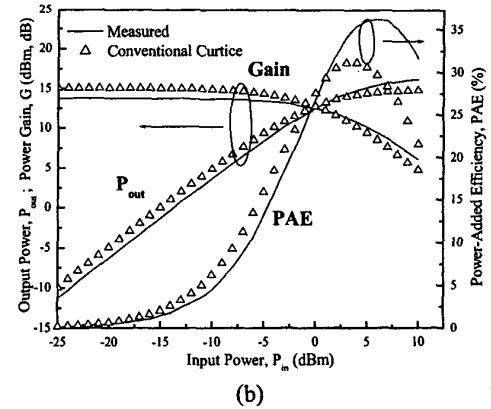
0.8 μ m gate-length quasi E-pHEMTs with a gate-width of 200 μ m were fabricated and characterized to build up this modified large-signal model. The simulated platform was carried out in the HP Advanced Designed System (ADS) simulator. The measured threshold voltage (V_{th}), peak transconductance (g_m), f_T and f_{max} are -0.1 V,

(a)

(b)

Fig.1 The measured and simulated dc performances of $0.8 \times 200 \mu\text{m}^2$ gate-dimension of quasi E-pHEMTs. I_{ds} - V_{ds} curves (a), and g_m - I_{ds} - V_{gs} (b)


Fig.2 The measured (solid lines) and simulated (open circle points) results of S-parameters under the bias of $V_{gs}=0.3$ V and $V_{ds}=3$ V from 50 MHz to 20

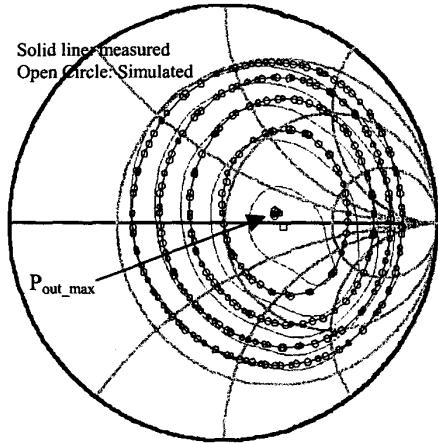
325 mS/mm, 18 GHz and 45 GHz, respectively, under the gate and drain biases of 0.3 V and 3 V for this AlGaAs/InGaAs quasi E-pHEMT device.

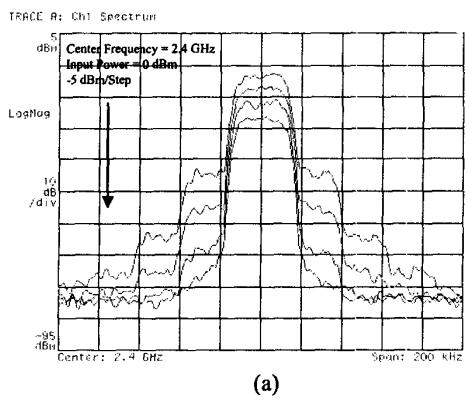
Fig.1 shows the device dc I-V and g_m characteristics for quasi E-pHEMTs. The model simulating results are also included in these figures, where a good agreement with the experimental ones can be reached. Fig.2 shows the device microwave S-parameters of the frequency range from 50 MHz to 20 GHz ($V_{gs}=0.3$ V and $V_{ds}=3$ V.) It is obvious that the excellent agreement is also obtained by using this modified quasi E-pHEMT model.

(a)

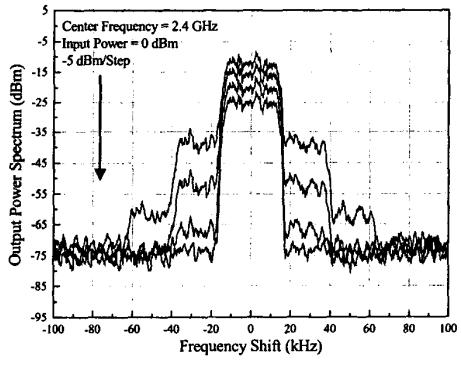
(b)

Fig.3 The measured (solid lines) and simulated (open points) output power performance at 2.4 GHz under the bias of $V_{gs}=0.3$ V and $V_{ds}=3$ V. Modified Curtice model (a), and conventional Curtice model (b)




Fig.4 The measured (solid lines) and simulated (open points) power contours with a constant input power of 0 dBm at 2.4 GHz. (-1 dBm/step)

III. MICROWAVE POWER PERFORMANCE OF QUASI E-pHEMTs


Besides the fundamental requirements of the well-matched dc and small signal characteristics provided by the model, a strict and accurate estimation of microwave power performance for quasi E-pHEMTs is also demanded. To fully evaluate the device microwave nonlinear behaviors, the device power performance either under a continuous wave or a digitally modulated scheme should be characterized first. Microwave load-pull power performance was evaluated for quasi E-pHEMTs at 2.4 GHz sinusoidal signals under a bias of $V_{gs}=0.3$ V and

$V_{ds}=3$ V with a 50 Ohm input and output load. Fig.3 (a) represents the output power (P_{out}), power gain (Gain) and power-added efficiency (PAE) as a function of the input power (P_{in}) for the measured and model predicted results. It is observed that an excellent consistence between both is obtained under a wide input power range (-25 dBm~10 dBm). The power gain is 13.9 dB, and the maximum output power density is 190 mW/mm with a maximum PAE of 35.8% for a 200 μ m wide E-pHEMT. Furthermore, we also compared them with the predictions from the conventional Curtice model, as shown in Fig.3(b), and it evidences again the accuracy provided by our modified large-signal model. In addition, we also simulated device output power contours, and compared them with the measured ones. In order to obtain the maximum output power, the source impedance of $22.03+j83.1$ ohm was fixed. As shown in Fig.4, with a 0 dBm input power, the load-impedance locations for the maximum output power is 15.3 dBm at $\Gamma_L = 0.28 \angle -3.66^\circ$ from the load-pull measurement, and is 15.8 dBm at $\Gamma_L = 0.24 \angle 9.2^\circ$ from the model simulation, respectively. A well agreement from both sides can be reached in this power contour evaluation.

Finally, since the signals are digitally modulated in modern communication systems, this is important to assess the device performance by the model under this modulation scheme. In order to evaluate the device nonlinear digital behaviors, we applied a $\pi/4$ DQPSK modulated NADC signal into this quasi E-pHEMTs to examine the adjacent channel power ratio (ACPR) and output power spectra, and compared them with the simulated results. Fig.5 shows the output spectra versus different input power levels, including the model predicted results, where the pHEMT gate-width is 200 μ m. The first side-lobe appears at the input power level larger than -10 dBm, and after input power reaching -5 dBm

(a)

(b)

Fig.5 The device output nonlinear behavior, spectral regrowth, at a 2.4 GHz by applying a $\pi/4$ DQPSK modulated NADC input signal. Measured spectra (a), and the model prediction spectra (b)

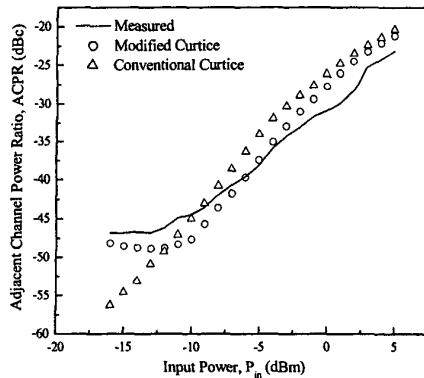


Fig.6 The measured (solid lines) and simulated (open points) ACPR at 2.4 GHz by applying a $\pi/4$ DQPSK modulated NADC input signal.

lobe starts to show up, which indicates that microwave non-linear behaviors become significant at input power of -10 dBm. Surprisingly, our modified model can predict exactly the same output digital spectra as shown in Fig. 5(b). As to the ACPR values extracted from the Fig.5, ACPR increases dramatically at the input power reaching -10 dBm, where the non-linear behaviors start to take off, as shown in Fig.6. However, the conventional Curtice model can't precisely handle the microwave non-linear behaviors of quasi AlGaAs/InGaAs E-pHEMTs.

IV. CONCLUSIONS

In this study, we proposed a modified large-signal model for quasi E-pHEMTs. This model has successfully

evidenced to a well prediction of the dc I-V, S-parameters and RF power performance. The device ACPR and spectra regrowth can also be characterized under a digital modulation scheme.

ACKNOWLEDGEMENT

The authors are grateful to the MOST Co. for providing E-pHEMTs. The work was supported by Grant No. 89-E-FA06-1-4 (University Scholarship Excellent Project) from the Ministry of Education, Taiwan, ROC.

REFERENCES

- [1] D. W. Wu, R. Parkhurst, S. I. Fu, J. Wei, S. S. Chang, D. Moy, W. Fields, P. Chye, R. Levitsky, "A 2 W, 65% PAE single supply enhancement mode power pHEMT for 3V PCS applications," *IEEE MTT-S Tech. Digest*, pp. 1319-1322, 1997.
- [2] Y. Tkachenko, A. Klimashov, C. J. Wei, Y. Zhao and D. Bartle, "E-HEMT for single supply, no drain switch and high efficiency cellular telephone power amplifiers," *IEEE MTT-S Tech. Digest*, pp. 443-446, 1998.
- [3] S. Yoshida, Y. Wakabayashi, M. Kohno and K. Uemura, "Greater than 70% PAE enhancement-mode GaAs HJFET power amplifier MMIC with extremely low leakage current," *IEEE IMS Tech. Digest*, pp. 1183-1186, 1999.
- [4] W. R. Curtice and M. Ettenberg, "A nonlinear GaAs FET model for use in the design of output circuits for power amplifiers," *IEEE Trans. Microwave Theory Tech.*, vol. 33, pp. 1383-1394, 1985.
- [5] H. Statz, P. Newman, I. Smith, R. Pucel and H. Haus, "GaAs FET device and circuit simulation in SPICE," *IEEE Trans. Electron Devices*, vol. 34, pp. 160-169, 1987.
- [6] I. Angelov, H. Zirath, N. Rorsman, "A new empirical nonlinear model for HEMT and MESFET devices," *IEEE Trans. Microwave Theory Tech.*, vol. 40, pp. 2258-2266, 1992.